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Introduction

What is dimensionality reduction

Remember that we can write data as a matrix.

In this context, high dimensional data refers to very large matrices,
specifically one with many variables (i.e. columns in matrix-notation,
also called features).

In the simplest of terms, dimensionality reduction is the
compression of data from a higher dimensional matrix to a lower
dimensional matrix.
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Introduction

Why would one want to perform dimensionality reduction?

"Compressing the data matrix" can be very helpful for both data
analysis and visualization.

In the context of visualization, lower dimensional data is obviously
easier to plot in a meaningful and comprehensible way.

In the context of analysis, reducing the dimension often also reduces
the computational cost.
Additionally, it helps us avoid the Curse of dimensionality.
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Introduction

What is the Curse of dimensionality??

First, let’s to take a closer look at Euclidean spaces.
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Introduction Euclidean spaces

Euclidean spaces I

Generally speaking, Euclidean spaces refer to the spaces Rn, n ∈ N.

They are sometimes also referred to as (Euclidean) n-spaces or
Cartesian spaces.

At this point, we could get into formal algebraic theory where Rn,
n ∈ N is a vector space, specifically a inner product space with
inner product defined by

⟨x,y⟩ :=
n∑

i=1

xiyi , ∀ x =

x1
...
xn

 ,y =

y1
...
yn

 ∈ Rn , n ∈ N .
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Introduction Euclidean spaces

Euclidean spaces II

Instead, we will focus on the more superficial understanding of the
Euclidean space Rn, n ∈ N, which is simply the space of all n-tuples
of real numbers:{

(x1, . . . , xn)
∣∣∣xi ∈ R ∀i ∈ {1, ..., n}

}
.

We usually refer the elements of this space as vectors and write
x = (x1, . . . , xn)

⊤ ∈ Rn, but we can also refer to n-dimensional
vectors as points in Rn - just as any element of Rn may be visualized
as both a point and a directed vector (i.e. line).

Finally, as vector spaces, Euclidean spaces have two things which are
also of interest to us:
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Introduction Euclidean spaces

Euclidean spaces III

1 Bases: For n ∈ N, any set B = {b1, . . . , bn} of n vectors in Rn is a
basis of Rn, iff every element of Rn may be written in a unique way as
a finite linear combination of elements of B, i.e.

∀u ∈ Rn ∃c1, . . . , cn ∈ R : u =

n∑
i=1

cibi .

→ Bases are not unique, but their elements are always linearly
independent and their cardinality equal to the corresponding vector
space’s dimension.

2 Subspaces: For n ∈ N, any nonempty subset V of Rn is a subspace,
if it is itself a vector space, i.e. iff every linear combination of finitely
many elements of V also belongs to V .
→ Each subspace of Rn has a basis with cardinality < n.
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Introduction Euclidean spaces

Example: All hyperplanes of R3 are subspaces

A hyperplane is a subspace whose dimension is one less than that of its
ambient space.

By Kilom691 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=37508909
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Introduction The Curse of dimensionality

The Curse of dimensionality I

The curse of dimensionality refers to the phenomena that occur when
classifying, organizing, and analyzing high dimensional data that does
not occur in low dimensional spaces, specifically the issue of data
sparsity and “closeness” of data.

Remember: High dimensional data refers to data with many variables
(or features) → Why?

Because we consider each observation as a data point, thereby
each row is a vector in a Euclidean space whose dimension is
determined by the number of variables/features.
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Introduction The Curse of dimensionality
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Introduction The Curse of dimensionality

Sparse Data - an exemplary visualization

Source: Cunningham, Padraig & Kathirgamanathan, Bahavathy & Delany, Sarah. (2021). Feature Selection Tutorial

with Python Examples.
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Introduction The Curse of dimensionality

The concept of "intrinsic dimension" I

In the context of signal processing, the term intrinsic dimension has
a formal definition.

However, it is also often used more generally as the number of
variables "required" to describe a data point.

In some cases, the term "required" can be taken literally, for example:
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Introduction The Curse of dimensionality

The concept of "intrinsic dimension" II

Source: https://mbernste.github.io/posts/intrinsic_dimensionality/
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Introduction The Curse of dimensionality

The concept of "intrinsic dimension" III

However, "required number of variables" can also be taken to mean
reasonably ’best’ number of variables considering all factors.

An example: What does the following depict?

Hannah Schulz-Kümpel Multivariate Verfahren 15 / 44



Introduction The Curse of dimensionality

The concept of "intrinsic dimension" III

However, "required number of variables" can also be taken to mean
reasonably ’best’ number of variables considering all factors.

An example: What does the following depict?

Hannah Schulz-Kümpel Multivariate Verfahren 15 / 44



Introduction The Curse of dimensionality

Intrinsic Dimension & Plato’s Allegory of the Cave

In the end the central questions is: What is the reasonably ’best’
number of variables considering all factors?

→ There are different methods to find out:
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Introduction The Curse of dimensionality

dimensionality reduction: an overview

Source Ray, P., Reddy, S.S. & Banerjee, T. Various dimensionality reduction techniques for high dimensional data

analysis: a review. Artif Intell Rev 54, 3473–3515 (2021). https://doi.org/10.1007/s10462-020-09928-0
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Feature extraction vs. feature selection
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Feature extraction vs. feature selection

Feature extraction vs. feature selection I
In a nutshell:

Extraction: Getting useful features from existing data.
Selection: Choosing a subset of the original pool of features.

Source: https://quantdare.com/what-is-the-difference-between-feature-extraction-and-feature-selection/
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Feature extraction vs. feature selection

Feature extraction vs. feature selection II

The main difference:

Feature Extraction transforms data, even from arbitrary formats such
as text or images, into numerical features that can then be processed
using statistical/ML models.

Feature Selection, on the other hand, can only be applied to numerical
features and merely eliminates potentially redundant/not strictly
necessary features.

Feature selection is, for example, applied in stepwise regression.
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Feature extraction vs. feature selection

Often, the issue is simplified as follows...

Do you agree? −→ Discuss
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Intuitive examples of reducing dimensions
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Intuitive examples of reducing dimensions Simplest approaches in practice

Motivational example: consulting on a psychological study I

Consider the following situation: A group of psychologists have collected
patient data, specifically

A target variable, which they want to regress on the variables

age, weight, height as well as

20 metric scores, each from a different psychological tests, measured
on different scales.

Can you come up with some simple ways of reducing the number of
independent variables in their planned regression?
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Intuitive examples of reducing dimensions Simplest approaches in practice

Motivational example: consulting on a psychological study II

Very simplest idea: Drop those variables that do not seem necessary
content-wise (such as possibly height).

−→ This would technically fall under feature selection.

A very simple way of reducing the number of independent variables
which would fall under feature extraction:

Summarizing all (or some of the) 20 metric scores into one new
variable by calculating a weighted average.

The most obvious problem with this approach in our setting
would be the different scales.

−→ This could be avoided by first standardizing all scores and then
summarizing them by calculating a weighted average.
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Intuitive examples of reducing dimensions Projections

Projections

A more theoretical concept which may be used for dimensionality
reduction are projections.

Generally, the term projection refers to an idempotent mapping from
a set (or other mathematical structure) into a subset (or
sub-structure).

Idempotent, in this context, means that projecting once is equal to
projecting twice.
I.e., if the projection is denoted by P , idempotence implies P = P ◦P .

For statisticians, the most important projections are linear projections:
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Intuitive examples of reducing dimensions Projections

Linear Projection I

Definition (Linear Projection)

A linear projection (or simply projection in the context of linear algebra) on
a vector space V is a linear operator P : V −→ V so that P 2 = P .
Specifically,
(i) we define any linear projection via a square matrices P that is equal

to its square, called projection matrix and

(ii) any square matrix P with P 2 = P = P⊤ defines an orthogonal
projection.

A vector v ∈ V is then linearly projected by multiplying the projection
matrix P with it, i.e. v 7−→ Pv.

For example, the identity matrix Ip, p ∈ N, is an orthogonal projection
matrix which projects any vector v ∈ Rp onto itself.
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Intuitive examples of reducing dimensions Projections

Linear Projection II

Intuitive Example: Consider the directed vector v⃗ ∈ R2, drawn as a
finite straight line pointing in a given direction, and the point x ∈ R not on
this straight line but in the same two-dimensional space.

The projection of x, i.e. Px for the appropriate projection matrix
P ∈ R2×2, is a function that returns the point “closest” to x along the
vector line v⃗.

In most contexts, closest refers to Euclidean distance, i.e. the point

x̄ ∈ R2 on the vector line v⃗ that minimizes
√∑2

i=1(xi − x̄i)2.

In the following, the green dashed line shows the orthogonal projection,
and red dashed lines indicate other potential (non-orthgonal)
projections that are further away from x than x̄ in the Euclidean space:
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Intuitive examples of reducing dimensions Projections

Linear Projection III

Source: https://bookdown.org/ts_robinson1994/10_fundamental_theorems_for_econometrics/linear-projection.html
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Intuitive examples of reducing dimensions Projections

Linear regression as linear projection I

Recall: The frequentist point estimates for the model coefficients can
then be calculated via ordinary least squares (OLS):
β̂ = (X⊤X)−1X⊤y .

−→ The point predictions are given by ŷ = X(X⊤X)−1X⊤y .

Note that P := X(X⊤X)−1X⊤ is an orthogonal projection,
because

P⊤ = (X(X⊤X)−1X⊤)⊤

= X(X⊤X)−1X⊤

= P ,

and
P 2 = X(X⊤X)−1X⊤X(X⊤X)−1X⊤

= X(X⊤X)−1X⊤

= P .
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Intuitive examples of reducing dimensions Projections

Linear regression as linear projection II

Hannah Schulz-Kümpel Multivariate Verfahren 30 / 44



Intuitive examples of reducing dimensions Projections

Marginal distribution as projection I

Given the joint distribution of a random vector X = (X1, . . . , Xp)
⊤,

p ∈ N, the marginal distribution of the ith entry
(FXi(xi) = FX1... Xp(∞, . . . ,∞, xi,∞, . . . ,∞)) is the projection of
the distribution FX1... Xp of the random vector X onto the axis xi,
and is completely determined by the distribution of the original vector.

Equivalently, the marginal distribution of several entries, i.e. ith –
(i+ 2)th (FXi,Xi+1,Xi+2(xi, xi+1, xi+2) =
FX1... Xp(∞, . . . ,∞, xi, xi+1, xi+2,∞, . . . ,∞)), is again a projection,
just to a higher dimensional subspace.
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Intuitive examples of reducing dimensions Projections

Marginal distribution as projection II

Consider the specific example of two jointly continuously OR discretely
distributed random variables X1 and X2 with a joint CDF FX1X2 .
Recall:

1 The marginal CDFs (which may be seen as projections) are given by
FX1(x1) = FX1X2(x1,∞) and FX2(x2) = FX1X2(∞, x2) .

2 We can estimate a discrete probability function for the random vector
X = (X1, X2)

⊤ by using relative frequency : Given a sequence of
data points {(x1i, x2i)}i=1,...,n, (x1i, x2i)⊤ ∈ R2 we get

p̂ : R2 −→ R , x 7−→ #x appears in the sequence {(x1i, x2i)}i=1,...,n

n
.

Hannah Schulz-Kümpel Multivariate Verfahren 32 / 44



Intuitive examples of reducing dimensions Projections

Marginal distribution as projection III

Question: How do we estimate the corresponding marginal
distributions p̂X1 and p̂X2?

Answer: Simply consider all observations of each variable as two
separate sequences {x1i}i=1,...,n and {x2i}i=1,...,n x1i, x2i ∈ R and
then define p̂X1 and p̂X2 w.r.t. just as p̂ above, but with regard to
these sequences, respectively.

As an intuition, the sequences {x1i}i=1,...,n and {x2i}i=1,...,n are
equivalent to the non-zero entries of the vectors we get by linearly
projecting each element of the sequence {(x1i, x2i)}i=1,...,n using

PX1 =

(
1 0
0 0

)
and PX2 =

(
0 0
0 1

)
, respectively.
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Intuitive examples of reducing dimensions Projections

Empirical marginal distribution (rel.freq.) - example in R I

library(ggplot2)
library(ggExtra)

set.seed(2023)
data<-data.frame(x2=rep(seq(-1,1,by=0.105),each=1000),

x1=unlist(lapply(seq(-1,1,by=0.105),
function(x){rnorm(1000,x,sd=0.25)})))

ggMarginal(ggplot(data, aes(x=x1, y=x2)) +
geom_point(fill = NA, colour = "royalblue2",shape=01,
alpha=0.75) + theme(legend.position="none")+ theme_bw(),
type="histogram",xparams = list(binwidth=c(0.1),
fill="royalblue2"),
yparams = list(binwidth=c(0.1),fill="royalblue2"))
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Intuitive examples of reducing dimensions Projections

Empirical marginal distribution (rel.freq.) - example in R II
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Outlook and topical classification

Note: There are many methods for dimensionality reduction!

In fact, especially methods we have grouped as unsupervised learning
are often also/primarily used for dimensionality reduction!

Others popular methods, which we will not be seeing in the lecture,
but address the issue of multicollinearity well:

t-distributed Stochastic Neighbor Embedding (tSNE)

Uniform Manifold Approximation and Projection (UMAP)

We have already covered at least one supervised learning method used
for dimensionality reduction though!
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Outlook and topical classification

Example: LDA for dimensionality reduction

Linear discriminant analysis (LDA) is both a classification
(supervised learning) method and a classic feature extraction method!

Specifically, we may utilize LDA for dimensionality reduction using the
following algorithm:

Source: mlxtend documentation
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Outlook and topical classification

Back to unsupervised learning:
Clustering for dimensionality reduction I

Clustering algorithms, such as k-means, can also be used for
dimensionality reduction by calculating the distance of each point to
each cluster center.

−→ Thereby, the number of features is reduced to the number of clusters.
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Outlook and topical classification

Back to unsupervised learning:
Clustering for dimensionality reduction I

Edited from:
https://medium.com/analytics-vidhya/less-known-applications-of-k-means-clustering-dimensionality-reduction-anomaly-detection-and-908f4bee155f
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Outlook and topical classification

Outlook

In the next 2 lectures, we will cover the topics of

More clustering methods, such as k-means

Principal component analysis (PCA)
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Outlook and topical classification

PCA teaser I

The main idea of PCA is to reduce the dimensionality of a data set
consisting of many variables correlated with each other, while retaining
the variation present in the dataset, up to the maximum extent.

This is done by transforming the variables to a new set of variables,
which are known as the principal components (PCs).

Using the PCs, the projection onto a lower dimensional subspace then
works similarly to LDA.

The difference is that PCA focuses on maximizing the variance in the
data, while LDA aims to maximize the separability between different
classes in a classification problem.
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Outlook and topical classification

PCA teaser II

Source: https://medium.com/@mayureshrpalav/principal-component-analysis-feature-extraction-technique-3f480d7b9697
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Outlook and topical classification

PCA teaser III

→ PCA is a feature extraction method.

Mathematically, we will require the following matrix decomposition
methods to perform PCA:

Eigendecomposition

Singular value decomposition (SVD)
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